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Influence of the fluctuations of polarization in molecular chains

Elie Simo and Timole´on C. Kofane´
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We analyze the influence of the fluctuations of polarization on the soliton transfer in one-dimensional
biexciton molecular chains. Important modifications appear on the model Hamiltonian with different exciton-
phonon coupling constants. The parameters of the solitary excitations~length and energy! are calculated. We
show that the fluctuations of dipoles will increase the soliton width and its rest energy. Finally, a brief study of
the statistical properties~partition function and specific heat! is done.@S1063-651X~97!00710-1#

PACS number~s!: 03.40.Kf, 05.60.1w
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I. INTRODUCTION

Theoretical investigations carried out by many authors
the fields of nonlinear physics have shown that localiz
excitations that are self-consistent combinations of intram
lecular excitations and longitudinal deformation may exist
molecular structures. Studies have been made in both
and two dimensions@1–6#. Such excitations are assumed
exist in a-helical protein molecules and other quasi-on
dimensional polymeric structures@3–5,7#. They play a major
role in the transfer of energy and/or information and oth
vital processes@4,5,7#. The above studies did not take in
account the interaction between the natural dipole of e
molecule and the exciton-induced dipole moment t
emerges due to the propagation of the excitation along
chain.

In this paper we analyze the influence of the fluctuatio
of the polarization on the different components of the Ham
tonian describing the dynamics of the system. We a
present changes that these fluctuations might introduce in
parameters of the solitary wave. We consider o
dimensional molecular chains where longitudinal displa
ments of the molecules from their equilibrium positions a
nonlinearly coupled with the intramolecular vibrations~exci-
tons!. In real nonlinear molecular chains there exist, in fa
many different types of excitons. Thus it is not appropriate
consider only one type as in the previous works@1,2,6#. We
investigate in this paper the case of two exciton evolutio
leading to equations of motion that we can solve exactly
Sec. II we show that fluctuations do not affect the phono
Hamiltonian, whereas important modifications occur in t
exciton and exciton-phonon Hamiltonians. In Sec. III w
show that the system admits a soliton solution and we p
pose a qualitative analysis of the parameters of the soliton
Sec. IV we calculate the energies, the partition function, a
the specific heat of the system under consideration.

II. INFLUENCE OF THE FLUCTUATIONS
OF POLARIZATION ON THE MODEL HAMILTONIAN

The model’s Hamiltonian of nonlinearly coupled excito
and phonons, investigated by various authors@1,8–10#, is
composed of three distinct contributions

H5Hex1Hph1H int . ~2.1!
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Here the exciton energy is

Hex5(
n

~J0An
†An1 J̃0Bn

†Bn!1(
n

M0~An
†An111H.c.!

1(
n

M̃0~Bn
†Bn111H.c.!24IAn

†AnBn
†Bn . ~2.2!

An
† (Bn

†) and An (Bn) are boson creation and annihilatio
operators, respectively, for quanta of excitons of theA type
~B type! with energyJ0 ( J̃0) at siten. These operators sat
isfy the Bose commutation relation.M0 (M̃0) is the energy
of the resonant dipole-dipole interaction between the near
neighbor intramolecular excitations of theA type ~B type!
andI .0 is the anharmonicity constant of the intramolecu
vibrations. The phonon energy operator is

Hph5(
n

F Pn
2

2M
1

Mv0
2

2
~Qn112Qn!2G , ~2.3!

wherev0 is the characteristic frequency andQn is the dis-
placement operator, with the conjugate momentum oper
Pn . Finally, the exciton-phonon interaction energy is giv
as

H int52J1(
n

~Qn112Qn21!An
†An2 J̃1~Qn112Qn21!

3Bn
†Bn2M1(

n
~Qn112Qn!~An

†An111H.c.!

2M̃1(
n

~Qn112Qn!~Bn
†Bn111H.c.!. ~2.4!

The nonlinear coupling constantsJ1 ,J̃1 ,M1 ,M̃1 arise from
modulation of the on-site energy by the molecular displa
ments.

We are now interested in the energy of the polarizat
fluctuations of dipoles. When it travels along the chain,
solitary wave generates an electric dipole due to an intra
lecular excitation. Then we might introduce an extra con
bution to the Hamiltonian~2.1! to describe the coupling be
tween this dipole moment and the intrinsic momentp of each
molecule. Let us represent byd (d̃) the dipole that emerge
4751 © 1997 The American Physical Society
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4752 56ELIE SIMO AND TIMOLÉON C. KOFANÉ
resulting from the intramolecular excitation of theA type ~B
type!. We assume that the two excitons have their dip
moments approximately directed along the one-dimensio
molecular system. The interaction energy between
exciton-induced dipolesd and d̃ at the siten and the dipole
p of the molecule at site 1 can take the form

Hi5(
n,l

pdK

ur nlu3 An
†An1(

n,l

pd̃K̃

ur nlu3 Bn
†Bn , ~2.5!

wherer nl is the distance between thel th andnth sites andK
(K̃) is the average value of cosu (cosũ), in which u ( ũ) is
the angle between the direction ofp andd (d̃).

In the case of only nearest-neighbor interactions the
pression of the HamiltonianHi is simplified to

Hi52
pdK

a3 (
n

An
†An12

pd̃K̃

a3 (
n

Bn
†Bn

26
pdK

a4 (
n

~Qn112Qn!An
†An26

pd̃K̃

a4

3(
n

~Qn112Qn!Bn
†Bn , ~2.58!

a being the lattice constant. To account for this new inter
tion Hamiltonian Hi the basic Hamiltonian~2.1! must be
replaced by

H ~n!5Hex
~n!1Hph

~n!1H int
~n! . ~2.6!

The form of the phonon’s Hamiltonian remains the sa
(Hph

(n)5Hph). But important modifications appear in the e
pression of the excitons’ Hamiltonian and the excito
phonon Hamiltonian. Indeed, to obtainHex

(n) , the parameters
J0 and J̃0 of Eq. ~2.2! have been replaced by

J0
~n!5J012

pdK

a3 ~2.7a!

and

J̃0
~n!5 J̃012

pd̃K̃

a3 . ~2.7b!

As one can see, the energy of an isolated vibratio
quantum of the A type ~B type! is increased by
2(pdK/a3)@2(pd̃K̃/a3)# by the fluctuation of the dipoles
On the other hand,H int

(n) is obtained by adding toH int the
term

H int
add526

pdK

a4 (
n

~Qn112Qn!An
†An26

pd̃K̃

a4

3(
n

~Qn112Qn!Bn
†Bn , ~2.8!

such that

H int
~n!5H int1H int

add. ~2.9!
e
al
e
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-
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-
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Let us note in passing thatH int contains four terms. The
first two terms describe a mixing of exciton and phon
vibrations, the last two terms are higher-order terms t
have the effect of changing the propagation of intramolecu
excitations as theQn amplitudes change. The addition
terms are also mixing terms. The HamiltonianH int

(n) now ex-
hibits two forms of interactions. The first form (Qn11

2Qn21)An
†An is the one used by Davydov, Eremko, an

Sergienko@11# to investigate solitons ina-helical protein
molecules. The second form (Qn112Qn)An

†An , which ap-
pears due to the fluctuations of the dipoles, has been
sented by Scott@12# as more appropriate to describe phon
coupling of the amide-I mode in thea helix because this
mode interacts primarily with the adjacent hydrogen bo
Thus new constants of mixing appear for the two types
excitons, i.e., 6(pdK/a4) and 6(pd̃K̃/a4), respectively.
Therefore, it is clear from the above analysis that the fl
tuations of polarization modify the mixing of exciton an
phonon vibrations.

The second part ofH int preserves its form. We can the
conclude that the fluctuations do not affect the direction
the propagation of excitons along the chain as theQn ampli-
tudes change.

III. INFLUENCE ON THE PARAMETERS
OF THE SOLITARY WAVE

To determine the basic equations governing the syst
we introduce the coherent state ansatz

uD~ t !&5uC~ t !&exp@2S~ t !#u0&ph, ~3.1!

where

uC~ t !&5(
n

@cn~ t !An
†1bn~ t !Bn

†#u0&ex, ~3.2!

S~ t !5
i

\ (
n

@un~ t !Pn2pn~ t !Qn#, ~3.3!

and u0.ex and u0.ph are the exciton and phonon vacuum
respectively.

Minimizing the expectation value of the total Hamiltonia
within the coherent state yields a set of coupled ordin
differential equations for the classical excitons and phon
wave functionscn(t), bn(t), andun(t),

i\
]cn~ t !

]t
5J0

~n!cn1M0~cn111cn21!2J1

3~un112un21!cn2M1@~un112un!cn11

1~un2un21!cn21#24Ibnbn* cn26
pdK

a4

3~un112un!cn , ~3.4!
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i\
]bn~ t !

]t
5 J̃0bn1M̃0~bn111bn21!2 J̃1~un112un21!bn

2M̃1@~un112un!bn111~un2un21!bn21#

24Icncn* bn26
pd̃K̃

a4 ~un112un!bn , ~3.5!

M
]2un~ t !

]t2 5Mv0
2~un111un2122un!2M1@cn* ~cn11

2cn21!1cn~cn11* 2cn21* !#2M̃1@bn* ~bn11

2bn21!1bn~bn11* 2bn21* !#2J1@ ucn11u2

2ucn21u2#2 J̃1@ ubn11u22ubn21u2#

26
pdK

a4 @ ucnu22ucn21u2#26
pd̃K̃

a4

3@ ubnu22ubn21u2#. ~3.6!

In the continuum approximation, the system of equatio
~3.4!–~3.6! becomes

i\c t5~J0
~n!12M0!c1M0a2cxx

22F ~M11J1!a13
pdK

a3 Guxc24I ubu2c, ~3.7!

i\b t5~ J̃0
~n!12M̃0!b1M̃0a2bxx

22F ~M̃11 J̃1!a13
pd̃K̃

a3 Guxb24I ucu2b, ~3.8!

Mutt5Mv0
2uxx22F ~M11J1!a13

pdK

a3 G~ ucu2!x

22F ~M̃11 J̃1!a13
pd̃K̃

a3 G~ ubu2!x . ~3.9!

In Eqs. ~3.7!–~3.9!, higher nonlinear terms have been n
glected.

We are seeking the solution of Eqs.~3.7!–~3.9!, which
corresponds to propagating waves of constant form,

u~x,t !5u~x2vt !, uc~x,t !u25m~x2vt !, s5x2vt.
~3.10!

v is the soliton velocity. In addition, the set of equatio
~3.7! and ~3.8! can be reduced to a system of coupled no
linear Schro¨dinger equations

i\c t5~J0
~n!12M0!c1M0a2cxx2

4k2

Mv0
2~12s2!

F ucu2

1
a

k̃2 ubu2Gc, ~3.11!
s

-

-

i\b t5~ J̃0
~n!12M̃0!b1M̃0a2bxx2

4k̃2

Mv0
2~12s2!

F ubu2

1
a

k2 ucu2Gb. ~3.12!

Here

k5~M11J1!a13
pdK

a3 , k̃5~M̃11 J̃1!a13
pd̃K̃

a3

~3.13a!

and

a5kk̃1IM v0
2~12s2!, s5

v
v0

. ~3.13b!

The basic equations~3.11! and ~3.12! can be derived from
Hamilton’s canonical equations for Hamiltonian density

Hd5~J0
~n!12M0!ucu21~ J̃0

~n!12M̃0!ubu22M0a2ucxu2

2M̃0a2ubxu224I ucu2ubu22
2

Mv0
2~12s2!

3~kucu21k̃ubu2!2. ~3.14!

The above nonlinear cubic equations~3.11! and ~3.12! have
the soliton solution@13#

c~x,t !5c0 sechFx2vt

D Gexp@ i ~kx2vt !#, ~3.15!

b~x,t !5b0 sechFx2vt

D Gexp@ i ~ k̃x2ṽt !#, ~3.16!

with

k5
\v

2uM0ua2
, k̃5

\v

2uM̃0ua2
, ~3.17a!

\v5J0
~n!12M02

\2v2

4uM0ua2 1
M0a2

D2 , ~3.17b!

\ṽ5 J̃0
~n!12M̃02

\2v2

4uM̃0ua2
1

M̃0a2

D2
, ~3.17c!

D5
@M0k̃21M̃0k22~M01M̃0!a#a

I ~a1kk̃!
, ~3.18a!

c0
25

a

2D

M̃0a2M0k̃2

~M01M̃0!a2M0k̃22M̃0k2
, ~3.18b!

b0
25

a

2D

M0a2M̃0k2

~M01M̃0!a2M0k̃22M̃0k2
. ~3.18c!

The analysis of Eq.~3.18! shows that the amplitudes and th
soliton width are positive provided that
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IM v0
2~12s2!.~M0k̃2M̃0k!k̃/M̃0 for M0 /k.M̃0 /k̃

~3.19!

and

IM v0
2~12s2!.~M̃0k2M0k̃ !k/M0 for M0 /k.M̃0 /k̃

~3.20!

are satisfied.
If we considera-helix proteins, which are examples o

one-dimensional molecular systems, the numerical va
usually used in the case of only one type of exciton
@14–16#

J050.205 eV, M0527.8 cm21, d50.3 D,

p55 D,

M15210212 N, J15~23.4!310211 N,

a54.5 Å,

M5114mp , v05~4.6!3103 m/s,

v5~4.5!3103 m/s. ~3.21!

For the matter of calculations, we assume that the par
eters concerning the second coordinateBn differ from those
of the first, as indicated in Ref.@10#, such that we can set

k̃5k~11«!, ~3.22!

with «!1. This latter constraint avoids the hypothesis
important fluctuations between both types of excitons a
allows a better cohesion of the system. In this context
expression ofD takes the form

D>
a

I
f ~k!, ~3.23!

where

f ~k!5
~M01M̃0!IM v0

2~12s2!2«k2

2k2~11«!1IM v0
2~12s2!

. ~3.24!

In the absence of fluctuational terms,k is reduced to

k r5~M11J1!a. ~3.25!

From the above numerical values, we obta
k r5(215.75)310221 N m and k5(22.25)310221 N m.
Then it is clear thatk r

2.k2 and f (k r), f (k). Consequently,
we haveD.D r . It follows from Eqs.~3.23! and ~3.24! that
the fluctuations of polarization lead to an increase of
solitary width D. It appear that the expression presented
previous works, without account for these effects, was
derestimated.

From Eqs.~3.18b! and ~3.18c!, one can notice that the
amplitudesc0 and b0 of the soliton are inversely propor
tional to its widthD. In the same vein, we can demonstra
that these amplitudes will decrease if the above influen
are included in the model of the system. Let us mention
passing that the productsDc0

2 andDb0
2 also increase.
es
e

-

f
d
e

e
n
-

s
n

IV. ENERGY CALCULATIONS: PARTITION FUNCTION

The exact expression of the energy per pulse is obtai
through the formula@17#

Ep5E
2~1/2!l

~1/2!l

Hd~s!ds. ~4.1!

The parameterl is the dimensionless pulse period. For t
sech-soliton solution,l5`. Then we find by substitutingHd
by its expression~3.14!

Ep52@~J0
~n!12M0!c0

21~ J̃0
~n!12M̃0!b0

2#
D

a

2FM0c0
2S k21

1

D2Da1M̃0b0
2S k̃21

1

D2DaGD
1

4

3 FM0c0
2a

D
1

M̃0b0
2a

D
2

2

Mv0
2~12s2!

D

a

3~kc0
21k̃b0

2!224I
D

a
c0

2b0
2G . ~4.2!

There is an increase of each term of Eq.~4.2!. According to
a-helix parameters, in the second set of square brackets
a minus sign are less important than all the positive con
butions. Finally, these fluctuations increase the energy
pulse.

On the other hand, the continuum limit of the Hamiltonia
~2.6! leads to the determination of the total energy of t
system

E5E01 1
2 msolv

2, ~4.3!

with

E05@~J0
~n!12M0!c0

21~ J̃0
~n!12M̃0!b0

2#
D

a

1
8~123s2!a2

3Mv0
2~12s2!2 @M11J11a~M̃11 J̃1!#2Dc0

4

~4.4!

and

msol5F 16c0
2a2

3Mv0
4~12s2!2

@M11J11a~M̃11 J̃1!#2

2
\2

a2 S c0
2

M0

2
b0

2

M̃0
D GD, ~4.5!

where

a5
b0

2

c0
2 . ~4.6!

HereE0 is the rest energy of the soliton andmsol is its effec-
tive mass. Accounting for the above analysis ofD, c0

2, b0
2,

Dc0
2, andDb0

2, it is straightforward to demonstrate thatE0

andmsol increase in such a situation.
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We are now interested in the statistical properties of
system. It is worth noting that the solution~3.15! and~3.16!
is obtained on the assumption that the length of the mole
lar chain is infinitely long. On the other hand, it is we
known that the thermodynamic influence of solitary wav
depends critically on the length of the system@17#. In large
systems, sech solitons play a relevant role in the evalua
of the partition function. In this case, the partition functionZ
and the specific heatC are expressed, respectively, as

Z5expS 2Ep

kBT D , ~4.7!

and

C5kBTS 2
] ln~Z!

]T
1T

]2 ln~Z!

]T2 D . ~4.8!

Ep is defined in relation~4.2! andkB is the Boltzmann con-
stant. The calculations yieldC50, whatever the case. There
fore, the fluctuations do not modify the specific heat of t
system under consideration.

We have plotted the partition functionZ as a function of
the temperature~Fig. 1!. Both pictures have been considere
when the fluctuations of polarization are absent and w
they are taken into account. The following results have b
obtained: In all the cases the partition function grows as
temperature increases, but it grows very rapidly in the
sence of the fluctuations.

V. CONCLUDING REMARKS

Our intention in this paper was to seek evidence for c
tributions to fluctuations of polarization of the dipoles in

FIG. 1. Plot of the partition functionZ versus temperatureT
~K!: the dotted line corresponds to the case where the fluctuat
are taken into account and the solid line is obtained in the abs
of fluctuations. We have usedK50.1, I 50.01 eV, and«50.001.
e

u-

s

n

e

:
n
n
e
-

-

model of one-dimensional molecular chains. We have int
duced two excitonic coordinates and have analyzed the
fluence of these fluctuations on the model’s Hamiltonian a
on the parameters of the solitary wave. In order to gai
better understanding of the changes that appear due to t
effects, we have calculated the energies, the partition fu
tion, and the specific heat. The above investigations sh
that the results obtained in previous works relevant to m
lecular chains needed some improvements. Indeed, the
ton width was underestimated, its amplitude was overe
mated, the rest energy of the soliton was underestima
etc., because these fluctuations were ignored.

We conclude with a few remarks concerning the appli
tion of our two-excitonic model theory to the transfer
energy and/or information in biomolecular systems. We n
that this application should be viewed very cautiously un
more complete theoretical studies are available. The po
bility of exciton self-trapping phenomenon to biophysics th
give rise to the standard Davydov soliton, where only o
mode of the exciton has been considered, tends to be
idealized. The inclusion of effects that are present in m
realistic biophysical systems, especially various forms of d
sipation, fluctuations, lattice discreteness, or several mo
of intramolecular vibrations, leads to exciton-phonon pro
lems that differ from the standard Davydov problems.

A very serious open question for the transfer of energy
biomolecular systems is to propose realistic models w
lower energy. In the present work, solitons created by
coupling between the exciton of the chain corresponding
simultaneous excitations of two modes of intramolecular
brations and the longitudinal phonon have higher ene
than the standard Davydov’s soliton. However, there are s
eral lines of investigation to decrease this energy.~i! The
generalized Fulton-Gouterman~FG! transcription and the to-
pological property of the FG equation can be used to es
lish improved forms of the vibrational wave functions@18#.
These solutions are shown to yield lower ground-state e
gies than the previous Davydov soliton theories@19#. ~ii ! For
the particlelike properties of solitary waves, the stability a
pears to be a necessary condition. This stability is relate
the complete integrability of the corresponding wave eq
tion. The integrability permits an analytical study of the mu
tisoliton interactions. Thus the integrability of the system
two coupled nonlinear Schro¨dinger equations based on th
concept of the degenerative dispersion laws has been e
lished@20# and multisoliton solutions have been obtained
using Hirota’s method@21#. Thus one should pay particula
attention to the solitonic ground-state energy when s
models are applied to biomolecular systems. This ques
must be left to further investigation.
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